将位图导入为ArcGIS面要素

本文根据笔者经验,介绍一种从位图图像导入ArcGIS称为要素的方法。这种方法适用于从现有出版物图片中获取地理信息的情况。

首先要说明的是,从位图导入要素是非常非常不精确的方式,如果有其它数据来源,那么就不应该采用此方法。

另外,如果位图包含的内容相对简单,区域结构紧凑不零散,则可以考虑ArcMap绘制地图,而不用此方法。

为让表述更直观,笔者从百度卫星地图截取了 辽宁省康平县 西泡子水库附近的区域,作为操作的说明。

00_orign

1. 制作灰度图

为便于在ArcMap中处理,将原始图像的色彩变为单一通道的灰度图,这样可以根据灰度数值对区域进行识别。

笔者使用Photoshop完成这一工作。

1.1 使用容差填充

这个过程包括去除图像中的干扰元素,例如区域的边界线,在之后转换的时候,只需要保留面要素的区域。当然,如果边界线较粗,可能会在区域之间留下较大的空白,这是不可避免的信息损失,因为原始图像本身就没有这部分信息。

采取容差填充,是为了避免压缩图像在色彩边界处的杂色影响。容差值应根据实际情况试探调节,以能够将同一区域包含,又能区别不同区域为基准。在清晰度较低的时候,个别图块会形成过渡色的效果,此时就需要酌情处理。

例如,当有大块相同相近颜色的区域时,可以将容差设置到20左右,如果不同类型区域颜色相近,或者相同类型区域内色差较大,可以设置容差为5,逐个填充相近颜色。

如果同一类型区域(属于同一图例表达)是分散的,那么填充时应取消“连续”勾选框。

局部个别色块(如市区中的零散地表)不宜用填充方法,可以使用画笔涂抹。经过处理后,卫星图片变成了这个样子:

01_fill

1.2 去色

这一步是将图片转换为灰度图片。在执行去色操作之前,可以将灰度级别相近的区域用相差较大的颜色重新填充。这一次由于之前的容差填充,相同类型的区域颜色已经基本一致,因此可将容差设置为0。

这里,我们假设我们要将整个地图分为 水域、林地、农用地、生活工业用地 4种,采用从黑到白的4个灰度表示,重新填充后图片如下:

02_gray

随后使用“图像 – 调整 – 去色”,去除残留的杂色。

1.3 整理

对原始图像本身的最后处理,包括填充空白(比如边界线、挖掉的水印等等),和裁切(除掉透明边缘、原始图像的边框等)。

2. 坐标定义

为了将图片插入到ArcMap现有地图的相应位置,需要确定图片的坐标。如果你不需要为图片定位,仅仅要对要素的参数进行度量,可略过此节。

笔者使用 ArcGIS online 的 ChinaOnlineCommunity 作为地图底图,需要注意该底图的准确性实际上很低。

2.1 加载图片拖放拾取参数

ArcMap中加入底图后,首先将地图移动/缩放到目标位置附近(康平西泡子水库),使用 Insert – Picture… 将 02_gray 图片插入到底图上。

通过缩放图片(通过鼠标或设置属性),将图片调整到合适比例尺的大小:

注意观察插入的图片(即我们后续要使用的栅格图)与底图相应地标(湖泊)大小相近。这里必须要说明,这种方式的位置精确度不高,但原始图像本身可能就存在变形,而且就像一开始提到的,整个过程本身就是非精确的。

移动缩放图片,不断调整,直到图片和底图的内容基本重合。

此时双击图像对象或右键选择 properties,打开图像对话框,切换到 size and position 选项卡。在 position 分组框中,调整 anchor point,记录下图片 4 个边缘的坐标值。

本例中为

E 13,738,512.5631 m

N 5,286,043.8744 m

W 13,710,444.7021 m

S 5,254,060.7501 m

2.2 定义坐标&偏移

位图图像的每个像素即为栅格的单元,由于示例图像为 w552 * h629 大小,因此每个像素代表的坐标长度为 50.84757。

由于底图的坐标为 WGS 1984 Web Mercator Auxiliary Sphere 投影坐标系,因此单位为 m。

在得到了坐标信息后,将插入的图像从地图上移除,在 Catalog 中添加图片(即栅格数据)所在文件夹位置,并通过在02_gray上右键->properties… 打开栅格属性对话框。

在对话框的 General 选项卡的 Spatial Reference 处,点击 Edit 进行编辑,选择与底图相同的坐标系,在此例中为:

Projected Coordinate Systems – World – WGS 1984 Web Mercator (auxiliary sphere)

选择之后双击坐标系条目,进入坐标系属性编辑,并根据已经掌握的信息,修改 假东、假北 以及线性单位的值。

对于此例,

1. 在线性单位为Meter情况下,设置假东值为 2.1中 W的负值,假北为 N的负值;

2. 线性单位从下拉框中选择<custom>,输入像素代表的距离 50.84757 (此时假东假北会自动相应转换)

应用修改并确定。

2.3 加入图层

坐标系和偏移位置定义完毕,将栅格拖到地图上,生成栅格图层。

栅格包含4个通道的值,Band1~Band3 分别为 R G B 通道,由于我们之前的灰度处理,每个像素内这 3 个通道的值相等;Band4 为png的alfa通道,表示透明度(此例无用)。

修改图层的Symbology为Stretched(选择Band1~Band3均可),即可看到灰度显示的图层。

3. 栅格处理

基本的图像处理已经完成,下面对栅格图层进行处理,生成要素。

3.1 重分类

栅格的值域是连续的,虽然我们进行过填充和去色,仍然可能包含图例外的灰度值,要转换成要素,需要依据图例数量(本例为 4 ,分别为 水域、林地、农用地、生活工业用地)重分类。

使用 Spatial Analyst Tools – Reclass – Reclassify 工具,按照等分4级方式定义分类。分类后数值从0~255变为1、2、3、4,调整颜色如下。

3.2 转为要素

基于重分类结果图层Reclass_png1,进行要素转换。

使用 Conversion Tools – From Raster – To Polygon 执行转换,生成面要素图层,

设置属性 symbology,采用 categories – unique values 方案,选择 grid_code 作为取值字段,并为每个值设置符号

4. 制图

制图部分仅简要介绍,因为此部分属于常规操作,具体步骤可参考教材或其他在线资料。

4.1 编辑要素,设置grid_code

如果你处理的图例较多,可能还需要手动将一些碎片的grid_code设置为想要的值。使用 (i) 编辑要素即可。

4.2 增加分类字段

要将要素图层作为地图的一部分,应按照需要定义domain(在数据集)并增加保存图例信息的字段(field,在要素类)。

4.3 填充分类字段

使用 DataManagementTools – Fields – Calculate Field 为新的字段赋值。需要使用 Python 脚本。

例如,新增了 text 类型的 Type 字段,用来保存 图例类型 信息,则计算是配置如下:

执行后可见赋值成功

4.4 融合

从上面的表格可以看出,虽然区域一共分为 4 类,但支离破碎,甚至相邻区域类型相同。

可以利用 DataManagementTools – Generalization – Dissolve 将相同类型的区域融合起来,成为单一面要素。

 

发表评论

电子邮件地址不会被公开。 必填项已用*标注


7 + 二 =